1、关键路径

  有向无环图方可求关键路径;

  AOE网络,研究的问题是:(1)、完成整项工作至少需要多少时间?(2)、哪些活动是影响工程进度的关键?

  在AOE网中,有些活动可以并行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径。

模型如下:

2、算法思想  

  (1)、首先建立AOE网络;

  (2)、从源顶点出发,按拓扑有序求其余各个顶点的最早发生时间ve[i];

  (3)、从汇顶点出发,逆拓扑有序求其余各顶点的最迟发生时间vl[i];

  (4)、根据各顶点的ve和vl值,求每条弧s的最早开始和最晚开始时间,若相同则为关键路径;

3、算法实现

  均由C++实现(邻接矩阵实现的):

template
void GraphMtx
::CriticalPath(const Type &vertex){ int n = Graph
::getCurVertex(); int *ve = new int[n]; for(int i = 0; i < n; i++){ ve[i] = 0; } int v = getVertexIndex(vertex); int j; int weight; for(i = 0; i < n; i++){  //求各个顶点最长路径,最早可能开始时间; j = getFirstNeighbor(getValue(i)); while(j != -1){ weight = edge[i][j]; if(ve[i] + weight > ve[j]){ ve[j] = weight + ve[i]; } j = getNextNeighbor(getValue(i), getValue(j)); } } for(i = 0; i < n; i++){ //从头开始,输出最早开始时间 cout<
<<"   "; } cout<
= 0; i--){  //逆序求最迟开始时间 j = getFirstNeighbor(getValue(i)); while(j != -1){ weight = edge[i][j]; if(vl[j] - weight < vl[i]){ vl[i] = vl[j] - weight; } j = getNextNeighbor(getValue(i), getValue(j)); } } for(i = 0; i < n; i++){ //从头开始,输出最迟开始时间 cout<
<<"   "; } cout<

4、完整代码、测试代码、测试结果

 (1)、完整代码

#ifndef _GRAPH_H_#define _GRAPH_H_#include
#include
using namespace std;#define VERTEX_DEFAULT_SIZE 10#define MAX_COST 0x7FFFFFFFtemplate
class Graph{public: bool isEmpty()const{ return curVertices == 0; } bool isFull()const{ if(curVertices >= maxVertices || curEdges >= curVertices*(curVertices-1)/2) return true;  //图满有2种情况:(1)、当前顶点数超过了最大顶点数,存放顶点的空间已满 return false;     //(2)、当前顶点数并没有满,但是当前顶点所能达到的边数已满 } int getCurVertex()const{ return curVertices; } int getCurEdge()const{ return curEdges; }public: virtual bool insertVertex(const Type &v) = 0;  //插入顶点 virtual bool insertEdge(const Type &v1, const Type &v2, E cost) = 0; //插入边 virtual bool removeVertex(const Type &v) = 0;  //删除顶点 virtual bool removeEdge(const Type &v1, const Type &v2) = 0; //删除边 virtual int getFirstNeighbor(const Type &v) = 0; //得到第一个相邻顶点 virtual int getNextNeighbor(const Type &v, const Type &w) = 0; //得到下一个相邻顶点public: virtual int getVertexIndex(const Type &v)const = 0; //得到顶点下标 virtual void showGraph()const = 0;  //显示图 virtual Type getValue(int index)const = 0; public: virtual void DFS(const Type &v) = 0; virtual void BFS(const Type &v) = 0;protected: int maxVertices;  //最大顶点数 int curVertices;  //当前顶点数 int curEdges;  //当前边数};template
class GraphMtx : public Graph
{ //邻接矩阵继承父类矩阵#define maxVertices  Graph
::maxVertices  //因为是模板,所以用父类的数据或方法都得加上作用域限定符#define curVertices  Graph
::curVertices#define curEdges     Graph
::curEdgespublic: GraphMtx(int vertexSize = VERTEX_DEFAULT_SIZE){  //初始化邻接矩阵 maxVertices = vertexSize > VERTEX_DEFAULT_SIZE ? vertexSize : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申请顶点空间 for(int i = 0; i < maxVertices; i++){  //都初始化为0 vertexList[i] = 0; } edge = new int*[maxVertices];  //申请边的行 for(i = 0; i < maxVertices; i++){ //申请列空间 edge[i] = new int[maxVertices]; } for(i = 0; i < maxVertices; i++){ //赋初值为0  for(int j = 0; j < maxVertices; j++){ if(i != j){ edge[i][j] = MAX_COST; //初始化时都赋为到其它边要花的代价为无穷大。 }else{ edge[i][j] = 0;  //初始化时自己到自己认为花费为0 } } } curVertices = curEdges = 0; //当前顶点和当前边数 } GraphMtx(Type (*mt)[4], int sz){  //通过已有矩阵的初始化 int e = 0; //统计边数 maxVertices = sz > VERTEX_DEFAULT_SIZE ? sz : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申请顶点空间 for(int i = 0; i < maxVertices; i++){  //都初始化为0 vertexList[i] = 0; } edge = new int*[maxVertices];  //申请边的行 for(i = 0; i < maxVertices; i++){ //申请列空间 edge[i] = new Type[maxVertices]; } for(i = 0; i < maxVertices; i++){ //赋初值为矩阵当中的值 for(int j = 0; j < maxVertices; j++){ edge[i][j] = mt[i][j]; if(edge[i][j] != 0){ e++; //统计列的边数 } } } curVertices = sz; curEdges = e/2; } ~GraphMtx(){}public: bool insertVertex(const Type &v){ if(curVertices >= maxVertices){ return false; } vertexList[curVertices++] = v; return true; } bool insertEdge(const Type &v1, const Type &v2, E cost){ int maxEdges = curVertices*(curVertices-1)/2; if(curEdges >= maxEdges){ return false; } int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ cout<<"edge no exit"<
::getCurVertex(); bool *visit = new bool[n]; for(int i = 0; i < n; i++){ visit[i] = false; } DFS(v, visit); delete []visit; } void BFS(const Type &v){ int n = Graph
::getCurVertex(); bool *visit = new bool[n]; for(int i = 0; i < n; i++){ visit[i] = false; } cout<
<<"-->"; int index = getVertexIndex(v); visit[index] = true; queue
 q;  //队列中存放的是顶点下标; q.push(index); int w; while(!q.empty()){ index = q.front(); q.pop(); w = getFirstNeighbor(getValue(index)); while(w != -1){ if(!visit[w]){ cout<
<<"-->"; visit[w] = true;  q.push(w); } w = getNextNeighbor(getValue(index), getValue(w)); } } delete []visit; }public: void MinSpanTree_Kruskal(); void MinSpanTree_Prim(const Type &v); void CriticalPath(const Type &vertex);public: void TopoLogicalSort(); void ShortestPath(const Type &v, E *dist, int *path);protected: void DFS(const Type &v, bool *visit){ cout<
<<"-->"; int index = getVertexIndex(v); visit[index] = true; int w = getFirstNeighbor(v); while(w != -1){ if(!visit[w]){ DFS(getValue(w), visit); } w = getNextNeighbor(v, getValue(w));  } }private: Type *vertexList;  //存放顶点的数组 int **edge;  //存放边关系的矩阵};//typedef struct MstEdge{ int x;  //row int y;  //col int cost;}MstEdge;int cmp(const void *a, const void *b){ return (*(MstEdge*)a).cost - (*(MstEdge*)b).cost;}bool isSame(int *father, int i, int j){ while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } return i == j;}void markSame(int *father, int i, int j){ while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } father[j] = i;}template
void GraphMtx
::MinSpanTree_Kruskal(){  int n = Graph
::getCurVertex();  //由于要用到父类的保护数据或方法,有模板的存在,必须加上作用域限定符; MstEdge *edge1 = new MstEdge[n*(n-1)/2]; int k = 0; for(int i = 0; i < n; i++){ for(int j = i+1; j < n; j++){ if(edge[i][j] != MAX_COST){ edge1[k].x = i; edge1[k].y = j; edge1[k].cost = edge[i][j]; k++; } } } qsort(edge1, k, sizeof(MstEdge), cmp); int *father = new int[n]; Type v1, v2; for(i = 0; i < n; i++){ father[i] = i; } for(i = 0; i < n; i++){ if(!isSame(father, edge1[i].x, edge1[i].y)){ v1 = getValue(edge1[i].x); v2 = getValue(edge1[i].y); printf("%c-->%c : %d\n", v1, v2, edge1[i].cost); markSame(father, edge1[i].x, edge1[i].y); } }}template
void GraphMtx
::MinSpanTree_Prim(const Type &v){ int n = Graph
::getCurVertex(); int *lowCost = new int[n]; int *mst = new int[n]; int k = getVertexIndex(v); for(int i = 0; i < n; i++){ if(i != k){ lowCost[i] = edge[k][i]; mst[i] = k; }else{ lowCost[i] = 0; } } int min; int minIndex; int begin; int end; for(i = 0; i < n-1; i++){ min = MAX_COST; minIndex = -1; for(int j = 0; j < n; j++){ if(lowCost[j] != 0 && lowCost[j] < min){ min = lowCost[j]; minIndex = j; } } begin = mst[minIndex]; end = minIndex; printf("%c-->%c : %d\n", getValue(begin), getValue(end), min); lowCost[minIndex] = 0; int cost; for(j = 0; j < n; j++){ cost = edge[minIndex][j]; if(cost < lowCost[j]){ lowCost[j] = cost; mst[j] = minIndex; } } }}template
void GraphMtx
::TopoLogicalSort(){ int n = Graph
::getCurVertex(); int *count = new int[n]; for(int i = 0; i < n; i++){ count[i] = 0; } for(i = 0; i < n; i++){ for(int j = 0; j < n; j++){ if(edge[i][j] == 1){ count[j]++; } } } int top = -1; for(i = 0; i < n; i++){ if(count[i] == 0){ count[i] = top; top = i; } } int v, w; for(i = 0; i < n; i++){ if(top == -1){ return; }else{ v = top; top = count[top]; printf("%c-->", getValue(v)); w = getFirstNeighbor(getValue(v)); while(w != -1){ if(--count[w] == 0){ count[w] = top; top = w; } w = getNextNeighbor(getValue(v), getValue(w)); } } } cout<<"Over."<
void GraphMtx
::ShortestPath(const Type &vertex, E *dist, int *path){ int n = Graph
::getCurVertex(); bool *s = new bool[n];   //s是看当前的是否访问过的一个标记数组 int v = getVertexIndex(vertex); for(int i = 0; i < n; i++){ dist[i] = edge[v][i]; s[i] = false; if(i != v && dist[i] < MAX_COST){ path[i] = v; }else{ path[i] = -1;  //自己到自己路径为和无穷路径都为-1 } } int min; int weight;    //权值 s[v] = true; for(i = 0; i < n-1; i++){  //除去自身顶点 min = MAX_COST; int u = v; for(int j = 0; j < n; j++){ if(!s[j] && dist[j] < min){ min = dist[j]; u = j; } } s[u] = true; //找到最小的,每次只找最短路径 for(int k = 0; k < n; k++){ weight = edge[u][k]; if(!s[k] && weight < MAX_COST && dist[u]+weight < dist[k]){  //找最小权值的路径 dist[k] = dist[u] + weight; path[k] = u; //记录下当前新的起始位置 } } }}template
void GraphMtx
::CriticalPath(const Type &vertex){ int n = Graph
::getCurVertex(); int *ve = new int[n]; for(int i = 0; i < n; i++){ ve[i] = 0; } int v = getVertexIndex(vertex); int j; int weight; for(i = 0; i < n; i++){  //求各个顶点最长路径,最早可能开始时间; j = getFirstNeighbor(getValue(i)); while(j != -1){ weight = edge[i][j]; if(ve[i] + weight > ve[j]){ ve[j] = weight + ve[i]; } j = getNextNeighbor(getValue(i), getValue(j)); } } for(i = 0; i < n; i++){ //从头开始,输出最早开始时间 cout<
<<"   "; } cout<
= 0; i--){  //逆序求最迟开始时间 j = getFirstNeighbor(getValue(i)); while(j != -1){ weight = edge[i][j]; if(vl[j] - weight < vl[i]){ vl[i] = vl[j] - weight; } j = getNextNeighbor(getValue(i), getValue(j)); } } for(i = 0; i < n; i++){ //从头开始,输出最迟开始时间 cout<
<<"   "; } cout<

  (2)、测试代码

#include"Graph1.h"int main(void){    GraphMtx
 gm;    gm.insertVertex('A'); //0    gm.insertVertex('B'); //1    gm.insertVertex('C'); //2    gm.insertVertex('D'); //3    gm.insertVertex('E'); //4    gm.insertVertex('F');    gm.insertVertex('G');    gm.insertVertex('H');    gm.insertVertex('I');       gm.insertEdge('A','B',6);    gm.insertEdge('A','C',4);    gm.insertEdge('A','D',5);    gm.insertEdge('B','E',1);    gm.insertEdge('C','E',1);    gm.insertEdge('D','F',2);    gm.insertEdge('E','G',9);    gm.insertEdge('E','H',7);    gm.insertEdge('F','H',4);    gm.insertEdge('G','I',2);    gm.insertEdge('H','I',6); gm.showGraph();    gm.CriticalPath('A');    return 0;}

  (3)、测试结果

测试图模型: